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Abstract—To solve reinforcement learning problems, many
learning classifier systems are designed to learn state-action
value functions through a compact set of maximally general and
accurate rules. Most of these systems focus primarily on learning
deterministic policies by using a greedy action selection strategy.
However, in practice, it may be more flexible and desirable
to learn stochastic policies, which can be considered as direct
extensions of their deterministic counterparts. In this paper, we
aim to achieve this goal by extending each rule with a new policy
parameter. Meanwhile, a new method for adaptive learning of
stochastic action selection strategies based on a policy gradient
framework has also been introduced. Using this method, we have
developed two new learning systems, one based on a regular
gradient learning technology and the other based on a new
natural gradient learning method. Both learning systems have
been evaluated on three different types of reinforcement learning
problems. The promising performance of the two systems clearly
shows that learning classifier systems provide a suitable platform
for efficient and reliable learning of stochastic policies.

Index Terms—Learning systems, Stochastic systems, Gradient
methods

I. INTRODUCTION

Learning classifier systems (LCSs) are evolutionary ma-
chine learning technologies originally introduced by John
Holland [22], [23]. They are designed to learn decision-making
policies jointly defined by a set of classifiers. Each classifier
typically assumes the form of a “condition-action-payoff ” rule.
LCSs can be largely classified into two major types, namely
Michigan LCSs and Pittsburgh LCSs [28]. In this paper, we
will study accuracy-based Michigan LCSs, in particular the
XCS classifier system [50].

Recently, the successful application of LCSs on many real-
world problems has triggered increasing research interests
[3], [5], [39], [42], [48]. In particular, LCSs have been
frequently applied to tackle reinforcement learning problems
with prominent success [45]. For example, XCS and relevant
LCSs have been extensively explored to solve various robotic
control problems with proven effectiveness [2], [43], [44].
Meanwhile, other miscellaneous applications such as chemical
reaction control [7], traffic control [15], etc. have also clearly
demonstrated the usefulness of LCSs as effective machine
learning tools.

Gang Chen, Colin Douch, and Mengjie Zhang are with the School of Engi-
neering and Computer Science, Victoria University of Wellington, Wellington,
New Zealand (e-mail: aaron.chen@ecs.vuw.ac.nz; douchcoli@myvuw.ac.nz;
mengjie.zhang@ecs.vuw.ac.nz).

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

To the best of our knowledge, most of the XCS-based
systems attempted to solve a reinforcement learning problem
by learning a state-action value function. Such a value function
is jointly approximated by multiple classifiers in an LCS and is
exploited to foretell the expected long-term payoff of perform-
ing any action in every possible state. Very often, the payoff
is defined as the current reward plus the discounted future
reward to be received by a learning agent [18], [47]. Driven
by this value-function based approach, by further utilizing a
proper action selection strategy, the agent is expected to solve
a learning problem and hereby achieve the maximum possible
payoff.

To meet this goal, many existing research works utilized
a greedy action selection strategy. It defines a deterministic
policy that maps every state to the best action to be performed
in that state in order to maximize the state-action value
function. In fully observable and deterministic environments,
there exists at least one optimal deterministic policy that is
obtainable by using the greedy strategy. Nevertheless, when
the environment is stochastic and partially observable, no
deterministic policy may enable a learning agent to achieve its
maximum payoff [41]. In comparison with a fully observable
environment, a partially observable environment is marked by
the absence of the Markov property, i.e. the observation from
the current problem state cannot completely determine the
probability of reaching any new states upon performing an
action. Due to this observational limitation, a learning agent
may be trapped within a local loop or local optima whenever
a deterministic policy is adopted, therefore failing to achieve
its learning objective [41].

Instead of learning deterministic policies, an agent that
learns stochastic policies may easily escape from a local loop
and hence potentially present a good solution to the above
problem [19]. This idea can be realized by using, for example,
a probabilistic action selection strategy where the chance
of performing any action in a state is made proportional to
its expected payoff (i.e. according to the state-action value
function). Unfortunately, as will be illustrated in Section IV,
this strategy may fail to produce any optimal policy. The
ε-greedy action selection strategy is another approach for
constructing stochastic policies. It is very often used during
learning where an action is either selected uniformly at random
or the best action identified so far according to the learned
state-action value function will be performed. However, the
ultimate goal is still to learn deterministic policies. The ε-
greedy method itself may not produce any optimal policy.

To achieve a high level of flexibility in learning, we aim at
developing new mechanisms for direct learning of stochastic



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 2

action selection strategies in this paper. In XCS, action se-
lection depends heavily on the value function. Without using
the learned value function, e.g. by removing the prediction
parameter from each classifier, exploitive action selection (or
similar action selection strategies) during the testing phase will
not work properly. In this paper, each classifier in an LCS
is expanded to include a new policy parameter that directly
controls the probability of performing each action. While
testing the performance of the learned classifiers, we can
safely remove their prediction parameters without causing any
performance degradation. As discussed in [46], this separation
has an immediate benefit that arbitrarily small updates to the
value function will not abruptly change an agent’s preference
of taking any action.

Using policy parameters enables us to learn arbitrary
stochastic policies, including any deterministic policy as a
special instance. A policy gradient framework has also been
utilized in this paper to guide the learning of policy parameters.
This is achieved with the development of a new policy
parameter learning component. Two alternative learning rules
have been created for this component, one based on a regular
gradient learning technology and the other based on a new
natural gradient learning method.

Powered by the two learning rules, two new LCSs have been
developed based on XCS in this paper, known respectively
as Regular gradient XCS (i.e. RXCS) and Natural XCS (i.e.
NXCS). In order to evaluate their learning performance, exper-
iments have been conducted on three different types of rein-
forcement learning problems. Specifically, we found that both
NXCS and RXCS perform very well in partially observable
environments. The effectiveness of the two learning systems
is also clearly evident in environments where the outcome of
performing any action is subject to high level of randomness
(see Subsection VII-B). Meanwhile, NXCS and RXCS can
effectively solve traditional benchmark maze problems where
the optimal policies are deterministic. The promising results
clearly show that LCSs provide a suitable platform for efficient
and reliable learning of stochastic policies.

The remainder of this paper is organized as follows. Section
II reviews related works. A short introduction to reinforce-
ment learning and the XCS classifier system can be found
in Section III. Based on XCS, NXCS and RXCS will be
further developed in Section IV, Section V, and Section VI.
The performance of the two new learning systems will be
experimentally studied in Section VII. Section VIII concludes
this paper and points out possible future research directions.

II. RELATED WORK

A. LCSs for reinforcement learning

The introduction of XCS by Wilson in 1995 marked a mile-
stone in learning classifier system research [50]. According to
[28], XCS is the first classifier system that is both general
enough for a wide range of applications and simple enough
for in-depth analysis. Years of research also revealed some
limitations of XCS in solving difficult reinforcement learning
problems. For example, XCS failed to solve some problems
studied in [10] where a large number of actions have to be

performed until reinforcement is encountered. XCS was also
shown to be ineffective when the learning environment is
stochastic or partially observable [27], [29], [32].

As the understanding of XCS and other LCSs deepened in
the last decade, substantial improvements have also been made
to build new learning systems with enhanced capability and
performance [2], [10], [27], [28], [33], [40], [47]. For example,
researchers have put in huge efforts to develop flexible rep-
resentations of classifiers, including their conditions, actions,
and prediction functions, in order to enhance the applicability
of LCSs in many real-life learning tasks [9], [12], [13], [30],
[31]. Similar efforts have also led to the wide exploitation of
many artificial intelligence (AI) technologies, such as fuzzy
logic, neural network, and genetic programming [8], [16], [38],
[40].

In particular, technologies for learning fuzzy classifiers
in XCS-based systems have received considerable research
attention [16], [17], [21]. In a Fuzzy-XCS system [16], an
action can be directly obtained (in a deterministic manner)
from a selected action group of fuzzy classifiers that match any
environmental input. The action group with the highest mean
prediction will be further used to generate the output action
[16], [17]. For this purpose, multiple groups of consistent
and non-redundant fuzzy classifiers will be formed in the
first place. It is interesting to note that, in order to avoid
the ordering bias among all fuzzy classifiers in the learning
system, some random mechanisms have been adopted in the
group formation process. Because of that, the output action
is stochastic in nature. However, generating random actions
was not the main focus and was not explicitly controlled by
any learning technique in [16], [17]. Another major difference
from this paper lies in the fact that the fuzzy systems in [16],
[17] were designed to address single-step problems. On the
other hand, our target is multiple-step reinforcement learning
problems.

Motivated by the understanding that the classifiers and their
parameters in XCS jointly approximate the state-action value
function that solves a reinforcement learning problem, Butz
et al. proposed a new gradient descent approach for learning
these parameters [10]. As a result, a new learning system
called XCS with Gradient Descent was created with demon-
strated effectiveness. Meanwhile, to improve the effectiveness
of XCS when a learning environment is stochastic or partially
observable, XCS-based systems, such as XCSµ [29], have
also been proposed in the literature. As explained by Lanzi
and Colombetti, “the minimum prediction error experienced
in each environmental niche can be used to evaluate the
inaccuracy introduced by the environment” [29]. Driven by
this understanding, the updating of the prediction error in
XCSµ is revised by taking into account the inaccuracy due
to the uncertainty on agents’ actons.

Similar to the research works mentioned above, this paper
also features gradient descent methods for learning. Never-
theless, the goal of XCS with Gradient Descent is to learn a
good approximation of the state-action value function. On the
other hand, this paper focuses primarily on learning suitable
stochastic action selection strategies. Meanwhile, in this paper,
we have no interest in addressing the potential erroneous
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update of prediction error. Instead, we believe a policy gradient
method, specifically a natural gradient learning technique, can
be more reliable at handling environmental randomness (see
Section VII for experimental comparison between XCSµ and
our learning systems).

B. Policy gradient learning methods
In the literature, both the policy gradient methods and

the natural gradient learning techniques have been popularly
researched for reinforcement learning [6], [25], [36], [46]. Dif-
ferent from value function based learning algorithms, policy
gradient methods explicitly represent a decision-making policy
through a parametric model. Any change to the parameters in
the model by a learning agent may lead to behavioral alter-
ations. The agent can hence produce many different solutions
to a learning problem.

Depending on the nature of the model, the policies to be
learned by the agent can be either deterministic or stochastic
[20]. Researchers have explored many different model repre-
sentations, ranging from simple linear representations to more
sophisticated time-dependent representations [24]. This paper
will demonstrate the use of a different representation technique
where the policy is modelled through a set of dynamically
evolving classifiers.

After determining the models to be used for representing a
policy, the next step is to develop useful search techniques in
the parametric policy space. For this purpose, many different
policy gradient search methods have been proposed [25], [35],
[46], [49]. In practice, the policy gradient is used to quantify
the influence of each policy parameter on the overall learning
performance. It essentially determines the scale and direction
of each learning step. With the help of the policy gradient,
effective search in the policy space can be performed towards
identifying the optimal policies in the learning problem.

In the literature, the finite difference policy gradient is
widely considered as a simple way to obtain the policy
gradient [26], [35]. Besides that, likelihood-ratio methods have
also been developed to determine policy gradients and guide
the search in the policy space [49]. Because a sampling
process is often used to determine a local estimation of
the policy gradient, the next gradient estimation may change
dramatically. As a result, the learning effectiveness will suffer.
To address this issue, it is desirable to enforce reasonably small
change in each learning step. The natural gradient concept has
been introduced to achieve this goal [1], [20].

Since 2000, this natural gradient learning technique has
attracted increasing research interests and several natural re-
inforcement learning algorithms have been successfully de-
veloped to facilitate the learning of stochastic policies [6],
[25], [36]. In addition to promoting learning stability, these
algorithms were clearly shown to be reliable tools for many
robot reinforcement learning tasks [34], [37].

To summarise, we found that policy gradient methods have
been extensively studied within the context of traditional
reinforcement learning algorithms. However, according to our
knowledge, few research works on evolutionary reinforcement
learning algorithms, such as the LCSs, have utilized policy gra-
dient techniques. To fill this gap, in this paper, we will embed

policy gradient mechanisms into an evolutionary system for
reinforcement learning and study their effectiveness.

III. REINFORCEMENT LEARNING AND THE XCS
CLASSIFIER SYSTEM

A reinforcement learning problem is commonly defined as
a problem where an agent learns to perform a task through
trial-and-error interaction with an unknown environment [45].
At any time t, the agent is in a state st that belongs to
the set S of all possible states of the environment. It senses
its environment and selects an action at among the set A
of possible actions. The action is then performed in the
environment. Subsequently, the agent receives a scalar reward
rt+1 as the feedback from the environment. It also changes
to a new state st+1. Starting from an arbitrary state of the
environment, the agent’s goal is to maximize the discounted
expected payoff it receives in the long run, which at time t is
defined as below:

E

[ ∞∑
k=0

γk · rt+1+k

]
(1)

where γ (0 ≤ γ ≤ 1) is the discount factor. XCS can be uti-
lized to solve this learning problem. In particular, by learning
the state-action value function Q(s, a) through a population
[P ] of classifiers, the greedy action selection strategy will
be further exploited to identify a solution to the problem in
the form a deterministic policy. The readers are referred to
[14] for a detailed algorithmic description of XCS. A brief
introduction to XCS is presented below by reviewing its four
key components. The use of the four components for learning
is also illustrated later in Fig. 2.

A. Classifiers

In XCS, each classifier cl includes a condition ccl and an
action acl. It also has seven parameters, including particularly
the prediction pcl that estimates the average payoff to be
expected whenever the classifier is used; the fitness Fcl that
estimates the average relative accuracy of classifier cl; the
experience expcl that counts the number of times that classifier
cl has participated in an action set; and the numeriosity numcl

that indicates how many classifiers represented by classifier cl
are present in the population.

B. Performance component

At any time t, XCS creates a match set [M ]t containing all
classifiers in the population that match the current sensory
input from state st. For every action a ∈ A, the system
prediction Pt(a), which is a local approximation of Q(st, a),
will be determined according to (2):

Q(st, a) ≈ Pt(a) =

∑
cl∈[M ]at

pcl × Fcl∑
cl∈[M ]at

Fcl
(2)

where [M ]at refers to a collection of those classifiers in
[M ]t that recommend action a. During learning, the ε-greedy



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 4

action selection method will be employed. Specifically, for all
experiments reported in Section VII, there is 50% chance of
selecting an action at according to (3) [14]. On the other hand,
during testing, the greedy action selection strategy described
also by (3) will be adopted. Once an action at is selected and
performed, the action set [A]t will be further constructed for
the subsequent reinforcement component.

at = argmax
a

Pt(a) (3)

C. Reinforcement component

Upon reaching a new state st+1 at time t + 1, the agent
will receive a scalar reward rt+1 from the environment.
Accordingly, the parameters of those classifiers in [A]t will
be updated based on the updating rules in [14]. In particular,
with a fixed learning rate β (0 ≤ β ≤ 1), the rule for updating
the prediction pcl of a classifier cl ∈ [A]t is given below:

pcl(t+ 1)← pcl(t) + β

(
rt+1 + γmax

a∈A
Pt+1(a)− pcl(t)

)
(4)

D. GA component

On a regular basis, a genetic algorithm will be applied to
those classifiers in [A]t. In particular, two classifiers from [A]t
will be selected for reproduction with probability proportional
to their fitness. The chosen classifiers are then copied to
produce offspring classifiers. Before joining the population
[P ], the offspring are first combined through a crossover
operation with probability χ and further modified through a
mutation operation with probability µ.

IV. BUILDING A STOCHASTIC POLICY

As shown in (2), classifiers in XCS are designed to approxi-
mate the state-action value function Q(s, a). The greedy action
selection strategy defined in (3) subsequently produces a deter-
ministic policy that solves a reinforcement learning problem.
However, as proven by Singh et al. in [41], in stochastic and
partially-observable environments, the best stochastic policy
can be arbitrarily better than the best deterministic policy.
This means that the expected payoff obtainable from learning
a stochastic policy can be much higher than the payoff achiev-
able by using any deterministic policy (at least on carefully
engineered problems).

In practice, by following the probabilistic action selection
strategy, a stochastic policy can be directly derived from
function Q(s, a). As a simple example, when the agent is in
state st at time t, the probability of performing any action a
can be calculated from

πt(st, a) =
Q(st, a)∑

a′∈AQ(st, a′)
(5)

XCS that uses (5) for action selection will be called XCS
with Roulette Wheel Action Selection (XCSrwas) in the sequel.
Unfortunately, XCSrwas may not be able to learn optimal
policies, even for single-step problems. For instance, Fig. 1

shows a simple reinforcement learning problem where the goal
for an agent is to reach state F from state S by performing
either action a1 or a2. Obviously, the best strategy for the agent
is to always perform action a1 in state S. The expected reward
in this case is 1000. However, when (5) is employed for action
selection, the probability for the agent to perform a1 is only
2/3. The expected reward is also reduced to 833.3. It is further
confirmed by the experiment results reported in Section VII
that XCSrwas is ineffective on all benchmark problems studied
in this paper.

S

F

Action: a1

Reward: 1000

Action: a2

Reward: 500

Fig. 1. A simple single-step learning problem with two states S and F and
two actions a1 and a2. The learning agent is in state S.

Obviously, (5) can be useful in some situations. For ex-
ample, when the reward of performing action a2 in Fig. 1 is
increased to 1000, then (5) will actually produce an optimal
stochastic policy. Our simple example clearly shows that, by
using the state-action value function alone, it is difficult for
an agent to decide when to use a stochastic policy or a
deterministic one. To achieve high level of learning flexibility,
the use of an action selection strategy should not depend
heavily on the state-action value function. For this purpose, in
this paper, each classifier is extended with an additional policy
parameter, denoted as ωcl. At any time t, using all classifiers
that belong to the match set [M ]t, the probability of choosing
any action a ∈ A is decided according to (6) below.

πt(st, a) =

∏
cl∈[M ]at

eωcl

∑
b∈A

 ∏
cl∈[M ]bt

eωcl

 (6)

As evident in (6), stochastic action selection in this paper
is performed independent of the value function Q. A similar
formula like (6) is also utilized by the softmax action selection
method [45], which however relies on Q instead of the policy
parameter ωcl to determine the probability of performing any
action.

Continuing with the example in Fig. 1, assume that the agent
is in state S at time t. Also assume that each of the two
alternative actions, i.e. a1 and a2, is associated with exactly
one classifier in [M ]t, represented respectively as cl1 and cl2.
Then, the probability of performing a1 and a2 are

π(S, a1) =
eωcl1

eωcl1 + eωcl2
and π(S, a2) =

eωcl2

eωcl1 + eωcl2

respectively. Using exponential functions in the above equa-
tions makes it easy for us to closely approximate the optimal



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 5

deterministic policy of selecting action a1. As a matter of fact,
when ωcl1 = 10.0 and ωcl2 = −10.0, numerical calculation of
π(S, a1) will produce a probability of 0.999999998. Because
of this, in Section VII, the value range for all policy parameters
is set to (−10,+10). Clearly, by adjusting ωcl1 and ωcl2 ,
arbitrary probability of performing either a1 or a2 is possible.
Hence, in theory any stochastic policy (including deterministic
policies) can be obtained by learning the policy parameters.

For this reason, a policy parameter vector ~ωt is further con-
structed to include ωcl of every classifier cl in the population
[P ]t. Obviously, (6) is not the only way of defining a stochastic
policy (or stochastic action selection strategy). However, it is
frequently used for building statistical models [6], [46]. In
[6], [46], ~ωt corresponds to a fixed collection of state-action
features which will remain unchanged during learning. On the
contrary, in this paper, every ωcl is provided by a classifier cl.
As classifiers are evolving during learning, ~ωt is also changing
dynamically over time.

One benefit of using (6) is that O~ωt
πt(st, at), which will

be used later for learning policy parameters, can be easily
calculated from (7) below.

O~ωt
πt(st, at) =

(
πt(st, at)− πt(st, at)2

)
~φat,t (7)

Meanwhile, O~ωt
log πt(st, at), which will also be utilized for

learning policy parameters, can be obtained directly from

O~ωt
log πt(st, at) = ~φat,t −

∑
b∈A

πt(st, b) · ~φb,t (8)

where, for any action a ∈ A, ~φa,t is defined as below

~φa,t(k) =

{
1, clk ∈ [M ]at
0, otherwise (9)

~φa,t(k) in (9) stands for the k-th element of ~φa,t, 1 ≤ k ≤ N .
N is the dimension of ~ωt. Using the example in Fig. 1 again,
suppose that there are only two classifiers cl1 and cl2 (as we
introduced earlier) in the population [P ] when the agent is
in state S. Then ~φa1 = {1, 0}, indicating the fact that only
classifier cl1 in [P ] matches state S and recommends action
a1. Similarly, we can also see that ~φa2 = {0, 1}.

V. AN ALGORITHMIC EXTENSION OF XCS FOR LEARNING
STOCHASTIC POLICIES

XCS presents an effective approach for learning a complete,
accurate, and maximally general set of classifiers [11]. The
same learning procedure will also be utilized to learn stochas-
tic policies in this paper. However, some modifications and
extensions, as we explained below, are necessary.
• Action selection during learning no longer needs to

follow the ε-greedy method. Instead, since exploration is
directly supported by the stochastic policy being learned,
in every state encountered, an action will be chosen with
the probability given in (6).

• At any time t, the prediction of each classifier cl ∈ [A]t,
i.e. pcl, will be updated according to a new updating rule
presented in (10) below. In comparison with the updating
rule of XCS, as described in (4), change is introduced in

(10) because prediction cannot be updated by assuming
that the action chosen by (3) will be performed at time
t + 1. Instead, any action a may be performed with a
probability of πt(st+1, a).

• To adjust the probability of performing any action in
response to the rewards received from the environment,
the policy parameters need to be constantly updated.
For this purpose, a separate policy parameter learning
component is introduced into the learning process. After
updating ordinary parameters of relevant classifiers, their
policy parameters will also be updated based on either a
regular gradient learning method or a new natural gradient
learning method.

pcl(t+ 1)← pcl(t) + β ·(
rt+1 + γ

∑
a∈A

πt(st+1, a) · Pt+1(a)− pcl(t)

)
(10)

While (termination criteria not met) {

    Update current time t

    Obtain sensory input from current state st

    Generate match set [M] t

    Calculate the probability of taking any action based on  (6)

    Select an action according to the calculated probability

    Perform selected action

    Observe reward r t+1 and state st+1

    For every classifier cl that belongs to [A]t {

        Update prediction pcl according to (10)

        Update other parameters of cl by using the same updating rules

        in XCS

    }

    Execute the policy parameter learning component

    Run GA component on [A]t

    Delete classifiers when the population is full

}

Fig. 2. An algorithmic extension of XCS for learning stochastic policies.

As we described in Fig. 2, the iterative learning process
in XCS is directly extended to learn stochastic policies. In
fact, except for the prediction parameter, other parameters of
every classifier cl ∈ [A]t will be updated by following the
same updating rules employed in XCS. After that, the policy
parameter learning component will be activated to update
the policy parameters of relevant classifiers. Details of this
component will be presented in Section VI. The ordinary GA
component of XCS will be applied afterwards and learning
will then proceed to the next iteration.

Since the learning procedure shown in Fig. 2 is almost
identical to that of XCS, we are expected to maintain many
of the strengths of XCS while learning stochastic policies.
For example, because the evolution of classifiers is driven by
the same accuracy-based fitness updating rule and the same
GA component as in XCS, our extended learning system
will not reduce XCS’s capability of learning accurate and
general classifiers. This observation is verified experimentally
in Section VII.
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VI. DEVELOPING A POLICY PARAMETER LEARNING
COMPONENT

In this section, we aim at developing a new policy parameter
learning component. For this purpose, a mathematical connec-
tion between learning performance and the policy parameters
should be established in the first place. In line with (1), the
performance of using any policy π(s, a) by a learning agent
can be measured in the form of the discounted cumulative
reward in the long run [46], as shown below.

J(π) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a) ·R(s, a) (11)

R(s, a) above stands for the expected reward to be received
from the environment when action a is performed in state s.
dπ(s) is commonly known as the stationary probability [46]
and is defined below.

dπ(s) =
∞∑
t=0

γtPrπ(st = s)

where Prπ(st = s) represents the probability for the agent
to be in state s at any time t upon using policy π. Because
π(s, a) is a function of ~ω, it is straightforward to see that
the performance J is also a function of ~ω. Consequently, the
agent’s learning objective is to find the best ~ω∗ as defined
below

~ω∗ = argmax
~ω

J(~ω) (12)

A. A policy gradient framework

In order to develop a learning component for policy pa-
rameters, a policy gradient framework is adopted in this
paper. In comparison with the more well-established value-
function based approaches for reinforcement learning, exist-
ing research works showed that policy gradient methods are
highly competitive when an agent can only learn approximated
solutions [4], [6], [46]. Given the learning objective in (12), a
straightforward approach is to learn ~ω based on

~ωt+1 ← ~ωt + λt · O~ωt
J (13)

where λt is the learning rate. (13) clearly shows the direction
of learning which is determined completely by O~ωt

J . Using
unbiased estimation of O~ωt

J and under suitable assumptions
of λt, the policy parameter learning process, as described in
(13), is stable and will eventually converge to ~ω∗ [46]. This
convergence result can potentially be generalized to include
the case when the natural gradient is exploited to update ~ω
[6]. Learning through natural gradient will be presented later
in Subsection VI-C.

B. Learning policy parameters based on a regular gradient
method

Following (13), for the purpose of learning ~ω, we need to
find a way of approximating O~ωt

J . As explained in [46], this
requires us to use the advantage function defined below

A(s, a) = Q(s, a)− V (s) (14)

for any possible state s and possible action a. The value
function V (s) in (14) is further defined as

V (s) =
∑
a∈A

π(s, a) ·Q(s, a) (15)

Given the fact that unbiased approximation of the state-action
value function Q(s, a) is learned by XCS and can be computed
directly from (2), at any time t during learning, unbiased
approximation of V (st) and A(st, at) can also be computed
straightforwardly. In particular, A(st, at) can be approximated
by δt given in (16).

δt = rt+1 +γ ·
∑
a∈A

πt(st+1, a) ·Pt+1(a)−
∑
a∈A

πt(st, a) ·Pt(a)

(16)
According to [46], unbiased approximation of O~ωt

J can be
further obtained by using (17) below.

O~ωt
J =

∑
s∈S

dπt(s)
∑
a∈A

O~ωt
πt(s, a) ·A(s, a) (17)

Based on (17), to update ~ω, we may have to go through
all possible states and actions. Fortunately, at any time t,
only those classifiers belonging to the match set [M ]t will
be utilized for action selection. Moreover, after performing the
selected action at, only the prediction of those classifiers in the
action set [A]t will be updated according to (10). Therefore, it
is unnecessary for us to update the policy parameter of every
classifier in the population but only those in [A]t. From (17),
for any classifier cl ∈ [A]t, the derivative of J with respect to
ωcl can be approximated easily as

∂J

∂ωcl
≈ dπt(st) · δt ·

∂π(st, at)

∂ωcl
(18)

Assuming that the stationary probability dπt(st) is a constant,
an updating rule for learning policy parameters is subsequently
constructed as below

~ωt+1 ← ~ωt + λ · δt · O~ωπ(st, at) (19)

where ~ω only contains the policy parameters of those clas-
sifiers in [A]t. O~ωπ(st, at) is given in (7). Based on (19), a
new LCS known as the Regular gradient XCS (i.e. RXCS)
is created. RXCS follows the learning process described in
Fig. 2. Fig. 3 further explains how the policy parameters are
updated in RXCS.

C. Learning policy parameters based on a natural gradient
method

Practical application often shows that learning through the
regular gradient, i.e. (13), can be slow and unstable [1], [36].
Instead of using O~ωt

J , a natural gradient concept proposed
by Amari can be very helpful [1]. Theoretically, stochastic
policies learned through a classifier system are equivalent
to a family of statistical models situated in a parameter
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LearnPolicyParameters() {
Update current time t.
For every possible action a ∈ A {

Calculate Pt(a) and Pt+1(a) according to (2).
}
Calculate δ according to (16).
For every classifier cl ∈ [A]t {

Calculate O~ωcl
π(st, at) according to (7).

Update ωcl according to (19).
}

}
Fig. 3. The policy parameter learning component in RXCS.

vector space of ~ω. Each point in the space corresponds to
a specific stochastic policy. In a Riemannian space, which is
an extension of the Euclidean space, the distance between any
two neighboring points, namely ~ω and ~ω + ~d, is defined as

‖~d‖ =

√
~dT ·G(~ω) · ~d (20)

where G(~ω) is a N × N positive-definite matrix known as
the Riemannian metric tensor. If G(~ω) is always an identity
matrix, then the Riemannian space reduces to an Euclidean
space. In general, however, G is a function of ~ω. In the
Euclidean space, learning of ~ω is carried out through the
updating rule in (19). In the Riemannian space, on the other
hand, according to [1], learning should be performed based on
the natural gradient of J , i.e. Õ~ωt

J . Particularly, we have

~ωt+1 ← ~ωt + λ · Õ~ωt
J (21)

where the natural gradient Õ~ωt
J gives the steepest ascent

direction of J in the Riemannian space of ~ω and is defined as

Õ~ωt
J = G(~ωt)

−1 · O~ωt
J (22)

The choice of G(~ωt) seems to be arbitrary. In practice, the
Fisher information matrix presented below is often used as
the Riemannian metric tensor.

G(~ω) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a)O~ω log π(s, a) · O~ω log π(s, a)T

(23)
According to [1], for general statistical learning tasks, using

the Fisher information matrix can achieve the optimal learning
efficiency. For this reason, we will use (23) to define natural
gradient in this paper. Another important benefit of using
(23) is that Õ~ωt

J can be approximated efficiently by the
policy parameter learning component, even without the need
of calculating G(~ω) or G(~ω)−1. Specifically, similar with the
deductions presented in [6], [25], it is shown in Appendix A
that, for ~ωt that includes only the policy parameters of those
classifiers in [M ]t, Õ~ωt

J is approximately proportional to

Õ~ωt
J ∝̃ ~w + λ · δt · O~ωt

log πt(st, at)− λ ·
O~ωt

log πt(st, at) · O~ωt
log πt(st, at)

T · ~w

where O~ω log πt(st, at) is given in (8). ~w refers to an initial
approximation of Õ~ωt

J . By simply setting ~w to ~0, the updating
rule for learning policy parameters is immediately obtained as

~ωt+1 ← ~ωt + λ · δt · O~ωt
log πt(st, at) (24)

LearnPolicyParameters() {
Update current time t.
For every possible action a ∈ A {

Calculate Pt(a) and Pt+1(a) according to (2).
}
Calculate δ according to (16).
For every classifier cl ∈ [M ]t {

Calculate O~ωcl
log π(st, at) according to (8).

Update ωcl according to (24).
}

}
Fig. 4. The policy parameter learning component in NXCS.

The learning system that uses (24) is called the Natural XCS
(i.e. NXCS) classifier system in this paper. Fig. 4 describes
how policy parameters are learned in NXCS. According to
(24), the amount of update applied to ~ωt is partially determined
by δt, which is closely related to the reward rt+1. To ensure
that parameter update will not be strongly influenced by the
level of reward that the environment can generate, a direct
method is to set λ to the reciprocal of the maximum absolute
value of the single-step reward. This approach is adopted by
both NXCS and RXCS.

D. Understanding the learning rules

In (19) and (24), two learning rules have been successfully
developed for updating the policy parameters at any time
t. The practical meaning of these two rules can be easily
interpreted. Specifically, according to (19), whenever δt > 0,
~ωt will be updated in the direction of increasing π(st, at),
which is the probability of performing action at in state
st. By further checking the definition of δt in (16), it can
be immediately seen that δt > 0 as long as the payoff of
performing action at, which is

rt+1 + γ ·
∑
a∈A

πt(st+1, a) · Pt+1(a),

is greater than the expected payoff obtainable from following
policy πt in state s, that is∑

a∈A
πt(st, a) · Pt(a).

In other words, we should increase the chance of performing
action at if it can produce better-than-average payoff. On the
other hand, a learning agent will become less likely to select
action at if it gives rise to worse-than-average payoff (i.e.
δt < 0). This is exactly what the agent is supposed to do, i.e.
maximizing its long-term payoff. From this understanding, the
updating rule in (16) is shown to enable learning of policy
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parameters. Similarly, it can be demonstrated that (24) also
facilitates policy parameter learning. In fact, since

O~ωt
log πt(st, at) =

1

πt(st, at)
O~ωt

πt(st, at),

when δt > 0, the probability of selecting action at will also
be increased upon using (24). The main difference from (19)
lies in the fact that the amount of update in (24) is further
controlled by the factor 1/πt(st, at). If πt(st, at) is close to
0, big changes will be applied to ~ωt, in a hope of quickly
increasing the chance of performing action at. On the other
hand, if πt(st, at) is close to 1, the amount of update to ~ωt
will be reduced. This is because action at is already enjoying
a high selection probability, therefore learning is close to
convergence. In this case, updating ~ωt slowly may be more
desirable in order to stabilize the learning system. From the
above discussion, it can be envisaged that (24) will help to
learn policy parameters faster and more reliably, in comparison
with (19). Our experiment results reported in Section VII agree
with this understanding.

VII. EXPERIMENT RESULTS

The experimental study in this section focuses on maze
problems, which are two-dimensional grid environments made
up of three different types of positions: empty positions,
obstacles, and goals. A simple example is shown in Fig. 5,
where an empty position is marked by a valid system state si.
An obstacle is denoted by T . F stands for a goal (also known
as the terminal state) in the maze.

T

F s3

  s1 s2

T

T

T T T

TT

T

T

T

T

Fig. 5. An example maze problem.

At any time t, a learning agent will stay in one empty
position. For example, the agent in Fig. 5 is in state s1. It
can observe its eight adjacent positions in the grid. If an
adjacent position is an obstacle, the respective observation will
be described by two binary bits “0” and “1”. Similarly, if the
adjacent position is empty, the observation will become “0”
and “0”. Finally, if it is a goal of the maze, the observation
changes to “1” and “1”. The complete observation of the agent
is therefore represented through 16 binary bits. Accordingly,
the condition of a classifier is also comprised of 16 attributes.
Each attribute corresponds to a separate bit of an agent’s
observation. A condition attribute can assume one of three
alternative values, namely “0”, “1”, and “#”. Here “#” is the
“don’t’ care” symbol. Following [14], in all our experiments,
every condition attribute in a covering classifier is set to “#”
with a probability of P# = 0.33.

With respect to each of its eight adjacent positions, there is
a separate action that can bring the agent to that position. For

example, if the agent in Fig. 5 decides to move south, it will
end up in the goal of the maze and will therefore receive an
immediate reward of 1000. Immediately after it reaches the
goal, the agent will be relocated to a randomly selected empty
position. Instead of moving south, if the agent decides to move
north, it will remain in s1 because its move will be blocked
by an obstacle.

Experiments have been conducted on three groups of maze
problems. First of all, to study the performance of NXCS and
RXCS on traditional benchmark problems where the ultimate
goal is to learn deterministic policies, experiments on Woods1,
Maze5, Maze6, and Woods14 problems will be reported in
Subsection VII-A. Secondly, the effectiveness of NXCS and
RXCS at handling environmental randomness will be studied
in Subsection VII-B by using some stochastic maze problems,
including the Maze5ε and Maze6ε problems. Finally, the
capability of NXCS and RXCS for coping with perceptual
aliasing [27] will be demonstrated in Subsection VII-C with
the help of the Woods101, Woods102, and Maze 7 problems.
To facilitate our study, we have also utilized XCS, XCSµ [29],
XCSrwas (see Section IV), and XCS with Gradient Descent
[10] as competing learning systems.

In all our experiments, for a fair comparison, we follow
those parameter settings recommended in [14]. For certain
parameter such as β (see (10)), a value range from 0.1 to
0.2 is considered suitable in [14]. In this case, we will use
the middle value in the range. Accordingly, β is set to 0.15 in
all the learning systems to be studied in this section. Another
learning rate α for updating the fitness parameter is set to 0.1.
Parameter ε0 for identifying sufficiently accurate classifiers
equals to one percent of the maximum value of the single-
step reward. The discount factor γ is set to 0.71. Crossover
probability χ is set to 0.75 and the mutation probability µ
equals to 0.03. Additionally, threshold ΘGA that controls the
frequency of performing the GA component is set to 38. The
threshold for deleting a classifier, Θdel, is set to 20, and the
subsumption threshold, Θsub, is also set to 20.

In addition to the above parameter settings, we have also
tested the learning systems by setting our parameters dif-
ferently. For example, the typical value for β is 0.2 in the
literature [10], [29]. Instead of fixing β at 0.15, we have
also examined the learning performance when β = 0.2,
without noticing any significant performance difference. It is
worthwhile to note that the performance of LCSs with smaller
β (e.g. β = 0.01) has been studied in [10] as well. Their results
suggest that reducing the value of β may help to improve the
learning performance of XCS. Besides β, we have tested the
learning systems when γ is set to 0.8 and 0.6. By doing that,
we have observed similar outcomes as those to be presented
in the following subsections.

A. Experiments on Benchmark Maze Problems

In the literature, the performance of an LCS is usually tested
on several deterministic benchmark maze problems, including
the Woods1, Maze5, Maze6, and Woods14 problems. All the
four problems are solved by deterministic policies. They are
therefore exploited to examine whether deterministic action
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selection can be learned effectively through NXCS and RXCS,
as we hoped. Fig. 6, Fig. 7, Fig. 8, and Fig. 9 depict the four
maze problems, respectively.

T T F

T T T

T T T

s6 s7 s8

s1 s2 s3 s4 s5

s9 s10

s11 s12

s13 s14

s15 s16

Fig. 6. Woods1 problem: each of the 16 empty positions has been labeled
with a state s1, . . . , s16. The goal is denoted by F . T stands for obstacles
in the environment.
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s17 s18 s19 s20 s21

s22 s23 s24 s25

s26 s27 s28 s29 s30

s31 s32 s33 s34 s35 s36

Fig. 7. Maze5 problem: each of the 36 empty positions has been labeled with
a state s1, . . . , s36. The goal is denoted by F . T stands for obstacles in the
environment.
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T

Fig. 8. Maze6 problem: each of the 36 empty positions has been labeled with
a state s1, . . . , s36. The goal is denoted by F . T stands for obstacles in the
environment.

1) Experiments on the Woods1 problem: The Woods1
problem is perhaps the easiest Maze problem tested in this
paper. It has 16 distinct states. Guided by a deterministic
policy, an agent can reach the goal from any state in the
grid environment through a fairly simple path, sometimes by
constantly performing the same action.

The performance results from the Woods1 problem have
been summarized in Fig.10. The maximum population size is

T T T T TT T T T T T T T

T T T T s4T T s1 s2 s3 T T s5

s7 T T s8 TT s6 T T T s9 T s10

s12 T s13 T TT s11 T T T T s14 T

s15 T T s16 TT F T T T T T T

T s17 s18 T TT T T T T T T T

T

T

T

T

T

T

T T T T TT T T T T T T T T

Fig. 9. Woods14 problem: each of the 18 empty positions has been labeled
with a state s1, . . . , s18. The goal is denoted by F . T stands for obstacles
in the environment.

Fig. 10. Learning performance of NXCS, RXCS, XCS, XCSµ, XCSrwas and
XCS with Gradient Descent on the Woods1 problem. Performance is measured
as the average number of actions an agent performs in order to reach a goal.
The theoretical optimal performance is also indicated in this figure.

set to 400 classifiers in our experiments. Previous research
works used similar population sizes [29]. To reduce random-
ness, 30 independent experiments have been conducted for
each learning system. The average performance witnessed is
depicted in Fig. 10. The same practice is also followed to build
other result figures included in this paper.

As shown in Fig.10, after 5000 learning problems, NXCS,
RXCS, XCS, XCSµ, XCSrwas and XCS with Gradient De-
scent achieved average performances of 1.70, 1.70, 1.70, 1.70,
3.86, and 1.69 respectively. In comparison, the theoretical
optimal performance obtainable by following the best deter-
ministic policy is 1.69. The ANOVA test performed on the
six learning systems gave rise to a p-value which is far less
than 0.001. For your information, all statistical tests in this
paper are performed at the final step of the learning process.
Tukey’s post-hoc analysis further showed that XCSrwas was
outperformed by other learning systems. This can be easily
seen from Fig. 10. We also found that XCSrwas was ineffective
at solving other benchmark problems, including the Maze5,
Maze6, and Woods14 problems. Its performance results will
therefore not be further presented in this Subsection. On the
other hand, Tukey’s post-hoc analysis cannot find any signif-
icant performance difference among the rest of the learning
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systems.
We have also measured the average time spent by each

learning system for completing 5000 learning problems. In
particular, the average times taken by NXCS, RXCS, and XCS
are 0.639s, 0.728s, and 1.12s. Our time measurement was
performed in a computer with Intel Core i5 at 3.4GHz, 8GB
DDR3 memory, and Windows 7 Ultimate 64-bit operating
system. Surprisingly, XCS actually requires slightly longer
time than NXCS and RXCS. This might be because XCS
performs on average slightly more actions in order to reach a
goal in Woods1. In general, however, we do not think that the
observed time difference in between any two learning systems
is substantial. This observation also holds for other benchmark
problems examined in this subsection.

Fig. 11. Learning performance of NXCS, RXCS, XCS, XCSµ, and XCS
with Gradient Descent on the Maze5 problem. Performance is measured as
the average number of actions an agent performs in order to reach a goal.
The theoretical optimal performance is also indicated in this figure.

2) Experiments on the Maze5 problem: The Maze5 prob-
lem is another benchmark multi-step reinforcement learning
problem. Fig. 11 shows the performance results of NXCS,
RXCS, XCS, XCSµ, and XCS with Gradient Descent on
this problem. The maximum population size equals to 3000
classifiers in the experiments. As you can see from Fig.
11, the Maze5 problem is completely solved by all the five
learning systems. In particular, after 5000 learning problems,
these systems eventually achieved performances of 4.61, 4.59,
4.62, 4.57, and 4.56, respectively. The theoretical optimal
performance, in comparison, is 4.6. Similar with the Woods1
problem, the ANOVA test is performed and it produces a
p-value of 0.93, indicating that no significant performance
difference can be identified on the Maze5 problem.

3) Experiments on the Maze6 problem: Upon evaluating
the performance of an LCS, the Maze6 problem is often used
together with the Maze5 problem. In Fig. 12 we compare the
performance of NXCS, RXCS, XCS, XCSµ, and XCS with
Gradient Descent on the Maze6 problem when the maximum
population size is 3000 classifiers. As evident in the figure, all
the five learning systems quickly approached to the theoretical
optimal performance of 5.19. Specifically, after 10000 learning
problems, NXCS, RXCS, XCS, XCSµ, and XCS with Gra-
dient Descent achieved average performances of 5.23, 5.38,

Fig. 12. Learning performance of NXCS, RXCS, XCS, XCSµ, and XCS
with Gradient Descent on the Maze6 problem. Performance is measured as
the average number of actions an agent performs in order to reach a goal.
The theoretical optimal performance is also indicated in this figure.

5.21, 5.23, and 5.18 respectively. Again the ANOVA test is
performed, producing a p-value of 0.16. This result suggests
that all learning systems exhibited similar performance on the
Maze6 problem.

4) Experiments on the Woods14 problem: The last set of
experiments in this subsection is performed on the Woods14
problem. The Woods14 is a difficult problem. In particular,
XCS has been reported as failing to solve the problem properly
[10]. As depicted in Fig. 9, starting from certain state such
as s5, it will take a significant number of steps (i.e. 18)
for an agent to reach the only goal located at the bottom
left corner of the grid environment. Due to the long-delayed
reward, it is difficult for some LCSs such as XCS to accurately
approximate the state-action value function.

Fig. 13 depicts the learning performance of NXCS, RXCS,
XCS, XCSµ, and XCS with Gradient Descent on the Woods14
problem. Again the maximum population size is 3000 classi-
fiers. As evident in the figure, after 20000 learning problems,
NXCS and XCS with Gradient Descent obtained average
performances of 9.5 and 9.9 respectively. On the other hand,
the best policy in theory can achieve an average performance
of 9.5. In comparison with these two learning systems, other
competing learning systems appear to be less effective. To
verify this observation, ANOVA test is conducted and the
test gives rise to a p-value far less than 0.001. Tukey’s post-
hoc analysis further confirms that the observed performance
difference is significant. Because NXCS and XCS with Gra-
dient Descent behaved similarly on the Woods14 problem, a
t-test is performed over the two learning systems, producing
a p-value of 0.0003. This outcome suggests that NXCS may
actually perform better than XCS with Gradient Descent on
the Woods14 problem.

5) Evolution of a population of classifiers: Among the
six learning systems that we have tested in this subsection,
we believe NXCS and XCS with Gradient Descent are more
effective at tackling the benchmark maze problems. In partic-
ular, both NXCS and XCS with Gradient Descent completely
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Fig. 13. Learning performance of NXCS, RXCS, XCS, XCSµ, and XCS with
Gradient Descent on the Woods14 problem. Performance is measured as the
average number of actions an agent performs in order to reach a goal. The
theoretical optimal performance is also indicated in this figure.

solved the Woods14 problem while other learning systems
failed to do so. Besides the two, RXCS seems to perform
more reliably than XCS and XCSµ on the Woods14 problem.
The most ineffective system is XCSrwas. To better understand
the effectiveness of NXCS and RXCS, we need to find out
whether they achieved good performance by evolving a totally
different population of classifiers, for example, by evolving a
larger population of more specific classifiers.

Using the Woods1 problem as an example, Fig. 14 presents
the Average Classifier Specificity of NXCS, RXCS, XCS,
XCSµ, XCSrwas, and XCS with Gradient Descent during
the whole learning process up to 5000 learning problems.
Average classifier specificity measures the average number
of non-wildcard attributes in the condition of each classifier,
across the population. As illustrated in Fig. 14, for all learning
systems, the level of classifier specificity will be reduced as
learning continues. NXCS and XCS with Gradient Descent
achieved nearly identical specificity level at the time when
learning is completed. Comparatively, RXCS, XCS, and XCSµ
reached lower specificity levels. The difference with NXCS,
however, is only about 2.5. We believe this is not substantial.
Surprisingly, XCSrwas produced the lowest specificity level.
However, since its performance is much worse than other

XCSrwas

Fig. 14. Average Classifier Specificity of NXCS, RXCS, XCS and XCSµ on
the Woods1 problem. The classifier specificity is measured as the number of
non-wildcard attributes in the classifier’s condition.

learning systems, learning general classifiers is not its true
advantage.

XCSrwas

Fig. 15. The evolution of population size for NXCS, RXCS, XCS, XCSµ,
XCSrwas, and XCS with Gradient Descent on the Woods1 problem. Popula-
tion size is measured as the number of distinct classifiers in [P ].

Fig.15 depicts the average population size during learning
on the Woods1 problem. According to this figure, XCS and
XCSµ evolved relatively smaller population sizes than other
learning systems after 5000 learning problems. Nevertheless,
we do not believe the size difference is large enough to affect
the practical applicability of any learning system. Fig. 14 and
Fig. 15 together indicate that NXCS and RXCS will not evolve
a substantially large population of more specific classifiers, in
comparison with XCS, XCSµ, and XCS with Gradient De-
scent. This observation is again confirmed by similar patterns
witnessed on other learning problems. Generally speaking, the
maze problems are not particularly suitable for studying the
generalization capability of LCSs, in comparison with other
problems such as the multiplexer problem (which is a single-
step problem). Hence, more work is needed in the future to
examine how well NXCS and RXCS can generalize. Effective
generalization, however, is not the key focus of this paper.
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B. Experiments on Stochastic Maze Problems

The previous subsection showed that NXCS and RXCS can
effectively learn deterministic policies. In this subsection, the
reliability of the two learning systems in stochastic environ-
ments will be further investigated. Particularly, we have tested
NXCS, RXCS, XCS, XCSµ, XCSrwas, and XCS with Gradi-
ent Descent on several stochastic maze problems, including the
Maze5ε and Maze6ε problems, which are stochastic extensions
of the benchmark Maze5 and Maze6 problems.

A B C

�/2�/2

1-�

Fig. 16. Uncertainty that affects the actions performed in stochastic environ-
ments. When the agent decides to move north, with a probability of 1 − ε,
this action produces desirable result, relocating the agent to position B. On
the other hand, with a probability of ε/2, the agent will end up in the position
A (or position C).

In both the Maze5ε and Maze6ε problems, following a
common strategy utilized in [29], there is a certain degree
of uncertainty, quantified through ε, that affects the outcome
of performing any action by an agent. As illustrated in Fig. 16,
after performing an action to move north (the intended destina-
tion is position B), the agent may end up in either position A
or position C with a total probability of ε. Obviously the higher
the value of ε, the higher the uncertainty in the environment.
Uncertainty is common in practical applications. For example,
due to flaws (or even friction) in the motors or the mechanical
control system, a robot may often run away from its planned
track, therefore arriving at an unexpected position. Hence,
it is important that a learning system can reliably handle
environmental uncertainties without losing effectiveness.

As noted in [29], when ε ≥ 0.5, XCS has difficulty of
learning the optimal policy. On the other hand, XCSµ is more
robust to environmental randomness because it can clearly
separate two types of prediction errors in a classifier, i.e.
error due to generalization and error due to uncertainties in
the environment [29]. In our experiments, we set ε to 0.5 in
order to determine whether NXCS and RXCS will experience
similar problems as XCS.

1) Experiments on the Maze5ε problem: The performance
results for NXCS, RXCS, XCS, XCSµ, XCSrwas, and XCS
with Gradient Descent on the Maze5ε problem can be found
in Fig.17. NXCS seems to perform the best over the whole
learning process, developing an average performance of 8.731
after 5000 learning problems. In line with the findings reported
in [29], XCS failed to converge. Instead it exhibits large fluc-
tuations and produces an average performance of 24.036 after
5000 learning problems. XCSrwas also failed to converge,
giving an average performance of 243.2 eventually. RXCS and
XCSµ appear to behave similarly, with average performances
of 11.278 and 12.313 respectively at the end of the experiment.
Meanwhile, XCS with Gradient Descent achieved an average
performance of 11.02 after the learning process is completed.

Fig. 17. Learning performance of NXCS, RXCS, XCS, XCSµ, XCSrwas, and
XCS with Gradient Descent on the Maze5ε problem. Performance is measured
as the average number of actions an agent performs in order to reach a goal.

Our ANOVA test results in a p-value far less than 0.001. Using
t-test, it is subsequently confirmed that NXCS performed better
than RXCS, XCSµ, and XCS with Gradient Descent. On the
other hand, RXCS was not shown to perform differently from
XCSµ and XCS with Gradient Descent.

In terms of the execution time, we found that NXCS spent
on average 9.23s for completing 5000 learning problems.
Similarly, RXCS spent 14.6s for completing the same number
of learning problems. Other learning systems tend to take
similar amount of time for learning. For example, XCSµ
consumed an average of 11.3s, which is slightly higher than
the time required by NXCS. We believe this is mainly because
NXCS can solve the Maze5ε problem by performing less
number of actions. In general, the difference in execution time
is not substantial. NXCS and RXCS are not particularly time-
consuming in comparison with other learning systems. Similar
observations were also obtained for the Maze6ε problem.

2) Experiments on the Maze6ε problem: Fig.18 shows the
performance results of NXCS, RXCS, XCS, XCSµ, and XCS
with Gradient Descent on the Maze6ε problem. Evidently,
NXCS, RXCS and XCSµ can manage to stabilize their per-
formance eventually, reaching average performances of 9.886,
14.168 and 19.184 respectively after 10000 learning problems.
Conversely, XCS and XCS with Gradient Descent failed to
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Fig. 18. Learning performance of NXCS, RXCS, XCS, XCSµ, and XCS
with Gradient Descent on the Maze6ε problem. Performance is measured as
the average number of actions an agent performs in order to reach a goal.

converge properly. The observed performance difference is
supported by the ANOVA test, which leads to a p-value far
less than 0.001. Meanwhile, by using t-test, the performance of
NXCS is shown to be significantly better than that of RXCS
and XCSµ. Similarly, t-test result also suggests that RXCS
performed better than XCSµ, after completing 10000 learning
problems.

Besides the Maze5ε and Maze6ε problems, we have also
tested our learning systems on other stochastic problems such
as the Maze4ε problem. Similarly results were observed but
the details will not be presented here. The success of NXCS
and RXCS on stochastic problems shows that environmental
randomness can be effectively tackled by using appropriate
gradient descent methods, in particular the natural gradient
learning technique studied in this paper.

C. Experiments on Partially Observable Maze Problems

Learning stochastic polices is not only beneficial at handling
environmental randomness, but also desirable for coping with
observational limitations in a learning environment. In this
subsection, we will study this issue by performing experiments
on the Woods101, Woods102 and Maze7 problems.

1) Experiments on the Woods101 problem: The Woods101
problem, as depicted in Fig. 19, is a small grid environment
that consists of 10 empty positions. It is interesting to note
that, based on an agent’s perception in the Woods101 problem,
two states i.e. s2 and s4, are indistinguishable. Whenever
a deterministic policy is followed, the same action will be
performed in both states s2 and s4. There is hence a chance
for the agent to be trapped in a local loop. In comparison, if a
stochastic policy is utilized, the agent may choose to perform
different actions in states s2 and s4, increasing the chance of
escaping from the loop.

T

T

F

s6 s7 s8

s1 s2 s3 s4 s5

s9 s10

T

T

T

T

T

T

T

T

T

T

T

T

T T T T T

T T T T T

Fig. 19. The Woods101 problem: each of the 10 empty positions has been
labeled with a state s1, . . . , s10. The goal is denoted by F . T stands for
obstacles in the environment.

Due to the use of the greedy action selection strategy while
evaluating XCS, XCSµ, and XCS with Gradient Descent, if the
agent is trapped in a local loop, evaluation will continue from a
randomly selected new state. Without closely tracking its move
in the environment, a loop is simply identified whenever the
agent cannot reach a goal after 50 consecutive moves.

Fig. 20 presents the performance of NXCS, RXCS, XCS,
XCSµ, XCSrwas, and XCS with Gradient Descent on the
Woods101 problem. As can be seen from this figure, NXCS
and RXCS appear to perform much better than the other four
learning systems throughout the whole learning process. In
particular, at the end of the experiment (i.e. 8000 learning
problems), the average performances achieved by NXCS,
RXCS, XCS, XCSµ, XCSrwas, and XCS with Gradient De-
scent are 4.32, 4.33, 63.09, 40.35, 54.60, and 62.6 respectively.
This observation agrees well with the outcome of the ANOVA
test which produces a p-value far less than 0.001. Through
t-tests, we have further identified the learning systems that
perform differently. For example, the p-value is far less than
0.001 for the t-test between NXCS and XCS or between
NXCS and XCS with Gradient Descent. On the other hand,
the performance of NXCS and RXCS shows little difference.

Besides the above results, we also found that, after about
2000 learning problems, NXCS and RXCS achieved an aver-
age performance that is very close to the theoretical optimum
of 4.3. This optimum is obtained by theoretically evaluating
the performance of the best stochastic policy (determined
manually) without any memory component.

2) Experiments on the Woods102 problem: The Woods102
problem, as depicted in Fig. 21, is another partially observable
maze problem. There are four states, i.e. s7, s9, s18, and s20,
with identical observations in this problem. Fig. 22 shows
the performance results on the Woods102 problem. Similar
with the Woods101 problem, it is apparent that NXCS and
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Fig. 20. Learning performance of NXCS, RXCS, XCS, XCSµ, XCSrwas,
and XCS with Gradient Descent on the Woods101 problem. The performance
is measured as the average number of actions to be performed by an agent in
order to reach a goal. The theoretical optimal performance is also indicated
in this figure.

T TT T T T T

T TS1 T F T S2

T TS3 T S4 T S5

T TS6 S7 S8 S9 S10

T TS11 T S12 T S13

T TT T T T T

T TS14 T S15 T S16

T TS17 S18 S19 S20 S21

T TS22 T S23 T S24

T TS25 T F T S26

T TT T T T T

Fig. 21. Woods102 problem: each of the 26 empty positions has been labeled
with a state s1, . . . , s26. The goal is denoted by F . T stands for obstacles
in the environment.

RXCS performed much better than XCS, XCSµ, and XCS
with Gradient Descent (the ANOVA test again produced a p-

Fig. 22. Learning performance of NXCS, RXCS, XCS, XCSµ, and XCS with
Gradient Descent on the Woods102 problem. The performance is measured as
the average number of actions to be performed by an agent in order to reach
a goal. The theoretical optimal performance is also indicated in this figure.

value far less than 0.001). Meanwhile, XCSrwas performed
poorly but the corresponding result was not depicted in Fig.
22.

We also found that NXCS and RXCS converged to average
performances of 6.57 and 7.81 respectively, after 8000 learning
problems. The t-test subsequently shows that the performance
difference between NXCS and RXCS is significant (p-value
< 0.001). Particularly, NXCS achieved the best performance
among all learning systems. Its average performance is the
closest to the theoretical optimal of 6.15, with a small differ-
ence of only 0.42.

3) Experiments on the Maze7 problem: In comparison with
the Woods101 and Woods102 problems, the Maze7 problem,
as depicted in Fig. 23, is more difficult because the agent may
need to go through two aliasing states, namely s6 and s7,
before reaching a goal. Moreover, one aliasing state, i.e. s7,
is very far from the goal.

We can see the performance results of NXCS, RXCS, XCS,
XCSµ, and XCS with Gradient Descent on the Maze7 problem
in Fig.24. The results clearly showed that NXCS and RXCS
performed better than XCS, XCSµ, and XCS with Gradient
Descent over the entire learning process (the p-value of the
ANOVA test is far less than 0.001). NXCS and RXCS achieved
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T T T T T

T s1 s2 s3 T

T s4 T s5 T

T s6 T s7 T

T s8 T s9 T

T F T T T

Fig. 23. Maze7 problem: each of the 9 empty positions has been labeled with
a state s1, . . . , s9. The goal is denoted by F . T stands for obstacles in the
environment.

Fig. 24. Learning performance of NXCS, RXCS, XCS, XCSµ, and XCS
with Gradient Descent on the Maze7 problem. Performance is measured as
the average number of actions an agent performs in order to reach a goal.
The theoretical optimal performance is also indicated in this figure.

average performances of 6.02 and 9.05 respectively after
8000 learning problems. The t-test between NXCS and RXCS
produced a p-value far less than 0.001, confirming that even
NXCS and RXCS exhibit distinguishable performances. In
particular, the performance of NXCS is closer to the theoretical
optimal of 5.88, with a slight difference of 0.14.

4) Example learned classifiers: The experiment results
presented in this subsection clearly showed that, by learning
stochastic policies, NXCS and RXCS can more effectively
handle partially observable environments than XCS, XCSµ,

XCSrwas, and XCS with Gradient Descent. NXCS is also
shown to perform better than RXCS, thanks to its use of a
natural gradient learning technique.

Table I presents some example high-fitness classifiers
learned by NXCS from the Woods101 problem. All these
classifiers have reasonably long experience and high fitness
(i.e. close to 1). Classifier C1 in Table I matches with state s7
in Fig. 19. Both C2 and C3 match with states s2 and s4. C4
matches with s6. Finally C5 matches with both s9 and s10.

TABLE I
SELECTED HIGH-FITNESS CLASSIFIERS LEARNED BY NXCS FROM THE
WOODS101 PROBLEM. THE MAXIMUM POPULATION SIZE IS 1000. A

TOTAL OF 246 CLASSIFIERS HAVE BEEN EVOLVED IN THE POPULATION.

��� �����	���� 
�	���� �����	���� �����

���	��

��	����� ���������� 	��	��

C1 00***00

1*101*1

01 

SOUTH 1000.00 294 0.82 7891.00 8.70 

C2 0*0**1*

*0*0001

** 

SOUTH

_WEST 

863.52 57 0.84 7916.00 1.90 

C3 01*1010

0*0*0**

0* 

SOUTH

_EAST 

575.54 93 0.75 2547.00 1.65 

C4 0100000

***01*0

0* 

NORTH

_EAST 

636.22 173 0.74 5387.00 2.45 

C5 **0*010

*010101

01 

NORTH 477.94 34 0.84 778.00 1.54 

�

As recommended by C1, if an agent moves south from s7, it
will reach a goal and receive an immediate reward of 1000.0.
As a result, the prediction of C1 is 1000.0. To ensure a high
probability for the agent to move south, the policy parameter
ω in C1 assumes a high value of 8.70, agreeing with our
expectation. As we already mentioned, states s2 and s4 in Fig.
19 share identical observations. When an agent is in either s2
or s4, the optimal decision is to either move southwest or move
southeast with equal probability. As witnessed in Table I, C2
gives the recommendation to move southwest and C3 suggests
to move southeast instead. Based on the policy parameters of
C2 and C3 alone, it can be calculated that the probability
of moving southwest is 0.56 and the probability of moving
southeast is 0.44. We found that this difference in probability
does not lead to serious deterioration in performance since an
agent can still easily escape from a local loop. Finally, we
note that, regardless of whether the agent is in state s9 or
s10, the best decision is to move north. Therefore C5 serves
as a good generalization over the two states and it makes the
correct recommendation.

VIII. CONCLUSIONS

This paper studied a new method for learning stochastic
policies in LCSs based on a policy gradient framework.
Our research was motivated by the understanding that many
existing LCSs were designed to solve reinforcement learning
problems by learning state-action value functions and by using
a fixed action selection strategy such as the greedy strategy.
In this paper, through adaptive learning of action selection
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strategies, we have the goal to improve the performance of
LCSs, especially when the learning environment is stochastic
and partially observable.

Using XCS as the basis, two new learning systems have
been developed successfully in this paper. One system, termed
the RXCS, was designed to learn policy parameters by follow-
ing a regular gradient learning approach. The other system,
termed the NXCS, was constructed based on a new natural
gradient learning method. To the best of our knowledge, our
research presented the first study of learning stochastic policies
in LCSs by using both the regular gradient and natural gradient
technologies.

Experiments have been conducted on three groups of maze
problems. The results clearly showed the advantage of learning
stochastic policies. In comparison with XCS, XCSµ, XCSrwas,
and XCS with Gradient Descent, NXCS and RXCS are clearly
more robust to state aliasing and environmental randomness.
They also performed competitively on traditional benchmark
problems that are solved by learning deterministic policies.
Through analyzing the learning process and some learned clas-
sifiers (see Table I), it is further confirmed that the performance
gain achieved by NXCS and RXCS did not come at a price
of evolving a larger population of more specific classifiers.

Looking into the future, we would hope to see interesting
applications of NXCS and RXCS in real-world systems that
require sequential and stochastic decision making. The useful-
ness of NXCS and RXCS for a wide range of machine learning
problems, including data mining and pattern recognition tasks,
may also deserve in-depth investigation. Meanwhile, it is cu-
rious to see whether substantial theoretical analysis of NXCS
and RXCS can be performed to deepen our understanding of
their asymptotic behaviors including convergence properties.
Finally, we note that, in addition to XCS, the regular and
natural gradient learning technologies may potentially work
well with other types of LCSs. More efforts are therefore
necessary to fully develop LCS as an effective platform for
learning and supporting stochastic decision making.

APPENDIX A
LEARNING POLICY PARAMETERS THROUGH NATURAL

GRADIENT

This appendix explains how to derive the updating rule in
(24) for learning policy parameters based on natural gradient.
As has been proven in [46], the derivative of J with respect
to ~ωt can be computed from

O~ωt
J =

∑
s∈S

dπt(s)
∑
a∈A

O~ωt
πt(s, a) ·Qπt(s, a) (25)

The appearance of Qπt
in (25) suggests that we must approx-

imate Qπt first before estimating O~ωt
J . Similar with [46], let

~wt be a vector of N dimensions (N is also the dimension of
~ω), then an approximation of Qπt

as given below

Qπt
(s, a) ≈ ~wTt · O~ωt

log πt(s, a) (26)

is called compatible with the policy parameterization. Accord-
ingly the vector ~ψs,a = O~ωt

log πt(s, a) will be called the

compatible action-state vector. Provided that ~w∗t is the vector
that reduces the approximation error in (26) to its minimum,
then the following can be easily shown to be correct [46]:

O~ωt
J =

∑
s∈S

dπt(s)
∑
a∈A

O~ωt
πt(s, a) ·

(
~ψTs,a · ~w∗t

)
(27)

In particular, let us define the approximation error as

ε(~wt) =
∑
s∈S

dπt(s)
∑
a∈A

πt(s, a)
(
Qπt(s, a)− ~ψTs,a · ~wt

)2
Using the fact that O~w∗t

ε = 0, we have

O~w∗t
ε = −2 ·

∑
s∈S

dπt(s)
∑
a∈A

πt(s, a)

(
Qπt

(s, a)−
~ψTs,a · ~w∗t

)
· ~ψs,a

= 0 (28)

Since

∑
s∈S

dπt(s)
∑
a∈A

πt(s, a)Qπt
(s, a) · ~ψs,a = O~ωt

J

From (28), we further have

O~ωt
J =

(∑
s∈S

dπt(s)
∑
a∈A

πt(s, a)~ψs,a · ~ψTs,a

)
· ~w∗t (29)

Based on (22) and (23), it can be immediately seen that

~w∗t = Õ~ωt
J (30)

Up to this point it becomes clear that, in order to update
~ωt according to its natural gradient, all we need is to find
~w∗t . It is to be noted here that, instead of using ~ψTs,a · ~wt to
approximate Qπt

(s, a), the literature shows that it is a better
idea to approximate the advantage function defined in (14)
[6], [25]. Accordingly, by replacing Qπt in (28) with Aπt , it
is clear that

O~wt
ε(~wt) ≈ −2 ·

(
δt − ~ψTs,a · ~wt

)
· ~ψs,a (31)

Remember that δt in (31) is defined in (16). It serves as a
local approximation of the advantage function. Notice that
by reducing ε(~wt) to its minimum, ~w∗t , which is the natural
gradient of J at time t, can be obtained. Consequently, to
approximate ~w∗t , we should update ~wt along the direction
given in (31). A learning rule for ~wt therefore is

~wt+1 ← ~wt − λ ·
(
~ψs,a · ~ψTs,a · ~wt − δt · ~ψs,a

)
(32)

Based on (32), given ~w as an initial approximation of Õ~ωt
J ,

it becomes immediate that

Õ~ωt
J ∝̃ ~w + λ · δt · ~ψs,a − λ · ~ψs,a · ~ψTs,a · ~w

Using the above, we can finally derive the updating rule for
~ωt, as shown in (24).
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